Neutrino Scattering Physics
at
Neutrino Factories
Neutrino Scatterings Topics at NuFact03

<table>
<thead>
<tr>
<th>Monday 9 June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strangeness</td>
</tr>
<tr>
<td>11:00 W. Albrecio</td>
</tr>
<tr>
<td>11:30 R. Tayloe</td>
</tr>
<tr>
<td>12:00 Y. Miyaki</td>
</tr>
<tr>
<td>12:30 Lunch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuesday 10 June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Section</td>
</tr>
<tr>
<td>11:00 G. Zeller</td>
</tr>
<tr>
<td>11:30 C. Walter</td>
</tr>
<tr>
<td>12:00 K. McFarland</td>
</tr>
<tr>
<td>12:30 Lunch</td>
</tr>
</tbody>
</table>

| | **Deep Inelastic Scattering** |
|-----------------|
| 14:00 U. Yang | Unified approach for modelling neutrino deep inelastic cross section from very high Q^2 |
| 14:30 F. Sergiampietri | Near liquid argon detector for near future |
| 15:00 B. Bernstein | NuTeV Structure Functions: Preliminary Results and Future Work |
| 15:30 Coffee |

| | **sin^2\theta_W: Recent Results and Future Measurements** |
|-----------------|
| 16:00 I. Younus | First Results from SLAC E-158: Measuring Parity Violation in Moller Scattering: [PPT](#), [PDF](#) |
| 18:30 P. Reimer | DIS-Parity: Measuring sin^2\theta_W with Parity Violating Deep Inelastic Scattering: [PPT](#), [PDF](#) |
| 17:00 J. Yu | Precision Measurement of sin^2\theta_W in the NuTeV Far Detector: [PPT](#), [PDF](#) |

sin^2\theta_W anomaly

Strangeness

Deep Inelastic Scattering

Cross Section

Form Factors
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG1&2</td>
<td>Session 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K2K near detector analysis</td>
<td>H.Maesaka (Kyoto)</td>
</tr>
<tr>
<td></td>
<td>K2K far detector analysis</td>
<td>K.Kaneyuki (ICRR, Tokyo)</td>
</tr>
<tr>
<td></td>
<td>MiniBOONE</td>
<td>H.A.Tanaka (Princeton)</td>
</tr>
<tr>
<td></td>
<td>Low energy neutrino interactions(*)</td>
<td>T.Sato (Osaka)</td>
</tr>
<tr>
<td></td>
<td>Nuclear modification of valence quark distributions and its effects on</td>
<td>S.Kumano (Saga)</td>
</tr>
<tr>
<td></td>
<td>NuTeV $\sin^2\theta_W$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINERvA</td>
<td>H.A.Tanaka (Princeton)</td>
</tr>
<tr>
<td></td>
<td>Study of strange quark in the nucleon with neutrino scattering</td>
<td>J.Morfin (FNAL)</td>
</tr>
<tr>
<td></td>
<td>MiniBOONE scattering results</td>
<td>T-A.Shibata (TIT)</td>
</tr>
<tr>
<td></td>
<td>Tau production via neutrinos</td>
<td>K.Mawatari (Kobe)</td>
</tr>
<tr>
<td></td>
<td>K2K NC pi0 production</td>
<td>S.Nakamura (ICRR)</td>
</tr>
<tr>
<td></td>
<td>MINOS+NoVA</td>
<td>D.Harris (FNAL)</td>
</tr>
<tr>
<td></td>
<td>T2K - phase I</td>
<td>T.Ishida (KEK)</td>
</tr>
<tr>
<td></td>
<td>Double-beta decay</td>
<td>H.Ejiri (Osaka)</td>
</tr>
<tr>
<td></td>
<td>T2K - phase II</td>
<td>M.Shiozawa (ICRR, Tokyo)</td>
</tr>
<tr>
<td></td>
<td>BNL - VLBL</td>
<td>S.Kahn (BNL)</td>
</tr>
<tr>
<td></td>
<td>APS Study on Physics with Beta Beams and neutrino factory</td>
<td>S.Geer (FNAL)</td>
</tr>
<tr>
<td></td>
<td>What new results can Superbeam and a Neutrino Factory contribute to</td>
<td>D.Harris (FNAL)</td>
</tr>
<tr>
<td></td>
<td>neutrino scattering?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HARP result (*)</td>
<td>I.Kato (Kyoto)</td>
</tr>
<tr>
<td></td>
<td>BNL E910 result (*)</td>
<td>J.Link (FNAL)</td>
</tr>
<tr>
<td></td>
<td>Non-oscillation physics with large water Cherenkov</td>
<td>A.Sarrat (Stony Brook)</td>
</tr>
<tr>
<td></td>
<td>Liquid Argon TPC</td>
<td>A.Rubbia (ETH Zurich)</td>
</tr>
<tr>
<td></td>
<td>Large magnetic detector</td>
<td>A.Cervera (Geneva)</td>
</tr>
<tr>
<td></td>
<td>If LSND is oscillations?</td>
<td>H.Ray (LANL)</td>
</tr>
</tbody>
</table>
Contents of this presentation

• **Lepton Scattering and Nucleon Structure:**
 - Structure Function and Form Factor

• **What we know about Structure Functions:**
 - Unpolarized structure function and parton distributions
 - Polarized structure function and parton distributions

• **What we know about Form Factors:**
 - Electric, Magnetic and Axial Form Factors
 - Strange Form Factors

• **Generalized Parton Distribution Function:**
 - Deeply Virtual Neutrino Scattering
Structure Function:
Hard scattering with parton in nucleon
Deep Inelastic Scattering regime
$(Q^2 > 1\, \text{GeV}^2 \text{ and } W^2 > 10\, \text{GeV}^2)$
Probability distribution of parton
which carries momentum fraction x of nucleon:
with transverse size of $1/Q^2$

Form Factor:
Elastic, inelastic scattering
With momentum transfer "t"
$F(t) \leftrightarrow \rho(r)$
Charged Lepton / Neutrino Scattering

- **Charged lepton scattering:**
 - Through electric charge squared
 - can not distinguish quark and anti-quark
 - Flavor study requires additional information
 - from the other experiments
 - Flavor tagging with hadron coincidence measurement

- **Neutrino Scattering:**
 - Interaction through weak charge
 - Left-right handedness
 - quark anti-quark, flavor, spin structure
Structure Function

$q(x)$

Q^2

$1/Q$
Structure Function

Quark Parton Model:

\[F_2^\gamma(x) = x \sum_q e_q^2 (q(x) + \bar{q}(x)) \]
\[F_2^Z(x) = x \sum_q \left((g_V^q)^2 + (g_A^q)^2 \right) (q(x) + \bar{q}(x)) \]
\[g_V^q = \pm \frac{1}{2} - e_q \sin^2 \theta_W, \quad g_A^q = \pm \frac{1}{2} \]

Valence Component

\[F_3^Z(x) = \sum_q 2 g_V^q g_A^q (q(x) - \bar{q}(x)) \]
\[F_3^{W^+}(x) = 2 (-\bar{u}(x) + d(x) + s(x) - \bar{c}(x)...) \]
\[F_3^{W^-}(x) = 2 (u(x) - \bar{d}(x) - \bar{s}(x) + c(x)...) \]

Neglecting flavor mixing

\[\sigma^{l+N \rightarrow l'+X} \]
\[(-g_{\mu\nu} + \frac{q_\mu q_\nu}{q^2}) F_1(x, Q^2) + \frac{\hat{P}_\mu \hat{P}_\nu}{P \cdot q} F_2(x, Q^2) \]
\[-i \epsilon_{\mu\nu\alpha\beta} \frac{q^\alpha P^\beta}{2 P \cdot q} F_3(x, Q^2) \]
Structure functions in PDG

Proton

$F_2(x,Q^2) + c(x)$

- **H1**
- **ZEUS**
- **BCDMS**
- **E665**
- **NMC**
- **SLAC**

$\nu(x) = 0.3(\nu - 0.4)$

Nucleon (H1)

$Q^2 = 1500$ GeV2
$Q^2 = 5000$ GeV2
$Q^2 = 12000$ GeV2

Nucleon (BCDMS)

$Q^2 = 40-180$ GeV2

Nucleon (CCFR)

$\nu(x) = 0.12(\nu - 1)$

$x = 0.180$
$x = 0.275$
$x = 0.350$
$x = 0.450$
$x = 0.550$
$x = 0.650$
$x = 0.750$
$x = 0.0075$
$x = 0.0125$
$x = 0.0250$
$x = 0.050$
$x = 0.070$
$x = 0.110$
$x = 0.140$
Preliminary NuTeV results:

DIS2003, hep-ex/0307005

- \(R(x) \) measurement
- \(\sin^2\theta_W \) anomaly

Session 2. S. Kumano
Global QCD fit to available $F_i(x)$

CTEQ, GRV, MRS, ALEKHIN, …
PDF parameterizations are available.

ex.) CTEQ6

Chiral Quark Soliton Model:
Flavor symmetry of light flavor quarks
key for understanding QCD
Parton Distribution Functions

$E_\nu \sim 50 \text{ GeV}$

$Q^2 = 10 \text{ GeV}^2$

ν factory

S. Kumano @ NuFact03

CTEQ6 PDF (2.5 GeV2)

JHEP 0207:012, 2002

Wakamatsu, hep-ph/0209011

(b) SU(3) CQSM with Δm_s correction

MIYACHI Yoshiyuki, Tokyo Institute of Technology
Structure function of Nucleus: S. Kumano @ FuFact03 & NuInt04

can be modified due to nuclear medium effects

Hadron Production: Session 3 & 5@NuInt04

can be differ from in nucleon. (EMC, WA21/59, SLAC, HERMES)
Spin Dependent Structure Functions

\[\Delta q(x) = q^+(x) - q^-(x) \]

\[\gamma^*, Z^0, W^\pm \]

\[\langle F_{1,2,3} \rangle \]

\[+ i \epsilon_{\mu\nu\alpha\beta} \frac{q^\alpha}{P\cdot q} [S^\beta g_1(x, Q^2) + (S^\beta - S\cdot q P^\beta) g_2(x, Q^2)] \]

\[+ \frac{1}{P\cdot q} \left[\frac{1}{2} (\hat{P}_\mu \hat{S}_\nu + \hat{P}_\nu \hat{S}_\mu) - \frac{S\cdot q}{P\cdot q} \hat{P}_\mu \hat{P}_\nu \right] g_3(x, Q^2) \]

\[+ \frac{S\cdot q}{P\cdot q} \left[\frac{\hat{P}_\mu \hat{P}_\nu}{P\cdot q} g_4(x, Q^2) + (-g_{\mu\nu} + \frac{q_\mu q_\nu}{q^2}) g_5(x, Q^2) \right] \]

Parton Model:

\[
\begin{align*}
g_1^\gamma(x) &= \frac{1}{2} \sum_q e_q^2 (\Delta q(x) + \Delta \bar{q}(x)) \\
g_1^Z(x) &= \frac{1}{2} \sum_q (g_V^q + g_A^q) (\Delta q(x) + \Delta \bar{q}(x)) \\
g_5^Z(x) &= \sum_q g_V^q g_A^q (\Delta q(x) - \Delta \bar{q}(x)) \\
g_1^W^+ &= \Delta \bar{u} + \Delta d + \Delta \bar{c} + \Delta s \\
g_1^W^- &= \Delta u + \Delta \bar{d} + \Delta c + \Delta \bar{s} \\
g_5^W^+ &= \Delta \bar{u} - \Delta d + \Delta \bar{c} - \Delta s \\
g_5^W^- &= -\Delta u + \Delta \bar{d} - \Delta c + \Delta \bar{s}
\end{align*}
\]

EMC "Spin Puzzle":

\[
\Delta \Sigma = \int dx |\Delta u + \Delta d + \Delta s| \sim 0.2
\]
Spin Dependent Structure Functions

\[\Delta \Sigma = \int dx \left(\Delta u + \Delta d + \Delta s \right) \sim 0.2 \]
\[\Delta G = \int dx \Delta g(x) \gg 0 \]
\[\Delta s = \int dx \Delta s(x) \sim -0.1 \]
Semi-inclusive DIS measurement

\[d \sigma_h \propto \sum_q e_q^2 q(x) D_q^h(z) \]

produced hadron carries flavor information of quark involved to scattering through the fragmentation process

Longitudinally Polarized beam and target:

- \(e \): 27.6 GeV

\(e + N \rightarrow e' + h + X \)
Helicity Distribution from SIDIS

HERMES, hep-ex/0407032

Results from 5 flavor extraction:

assuming $\frac{\Delta \bar{s}}{\bar{s}} = 0$

Δs = 0 within errors

Contribution from low-x can amount ~30% of total integral assuming shape of PDF as done in QCD fit

Δu = 0.601 ± 0.039 ± 0.049
Δ\bar{u} = -0.002 ± 0.036 ± 0.023
Δd = -0.226 ± 0.039 ± 0.050
Δ\bar{d} = -0.054 ± 0.033 ± 0.011
Δs = 0.028 ± 0.033 ± 0.009

$x\Delta s(x)$ and $x\Delta \bar{s}(x)$ at $Q^2 = 1$ GeV2

M. Wakamatsu, hep-ph/0209011

LSS fit
E704 observed **single spin asymmetries** in Transversely polarized (anti-)proton scattering:

\[\vec{p} + p \rightarrow \pi + X \quad \vec{p} + p \rightarrow \pi + X \]

\[A_N = \frac{1}{P_B \langle \cos \theta \rangle} \frac{N^\uparrow - N^\downarrow}{N^\uparrow + N^\downarrow} \]

Final state interaction
Transverse spin dependent Fragmentation require transverse motion

PDFs were extended to have transverse momentum freedom:

- \(q \): momentum distribution
- \(\Delta q \): helicity distribution
- \(\delta q \): transversity
- \(f^\perp_{1T} \): Siverse

and more ...

Transversity and Sivers Asymmetries from SIDIS measurement

Electron scattering off Transversely Polarized Nucleon Target

transverse momentum creates single spin asymmetry in azimuthal angle distribution of hadron production cross section

\[e + \vec{N} \rightarrow e' + \pi + X \]

\[A_{UT}^{collins} \propto \delta q \cdot H_q^\pi \]

\[A_{UT}^{Sivers} \propto f_{1T}^\perp \cdot D_q^\pi \]

Tensor charge

Orbital Angular Momentum
Form Factor
Nucleon Form Factors

In DIS regime:

\[
G_M^q = \frac{1}{m} (l_q - l_{\bar{q}}) + \frac{1}{2m} (s_q - s_{\bar{q}}) = \frac{1}{m} l_q + \frac{1}{2m} \delta q
\]

\[
G_A^q = s_q + s_{\bar{q}} = \Delta q
\]

Breit frame

\[
G_E = \frac{1}{2Me} \langle N|J_0|N \rangle \quad \chi_f^\dagger \chi_i \left(F_1 - \frac{Q^2}{4M^2} F_2 \right)
\]

\[
G_M = -\frac{1}{2|\vec{q}|e} \langle N|J_+|N \rangle \quad \chi_f^\dagger \vec{\sigma} \chi_i \times \vec{q} \frac{F_1 + F_2}{2M}
\]

\[
G_A = \langle N|\vec{A}|N \rangle \quad \chi_f^\dagger \vec{\sigma} \chi_i G_A
\]

\text{low momentum transfer limit}

\text{Helicity distribution}

\text{Transversity distribution}

\text{Sivers distribution}

\text{In DIS regime:}

\text{Helicity distribution}
Electromagnetic Form Factor

Cross section measurement:

\[
\frac{d\sigma}{d\Omega} \propto \epsilon G^2_{Ep}(Q^2) + \tau G^2_{Mp}(Q^2)
\]

\[
\epsilon = \left[1 + 2(1 + \tau) \tan^2(\theta/2) \right]^{-1}
\]

\[
\tau = \frac{Q^2}{4 M_p^2}
\]

Polarization transfer measurement:

\[
\tilde{e} + p \rightarrow e + \tilde{p}
\]

\[
\frac{\mu_p G_{Ep}}{G_{Mp}} \propto \frac{P_t}{P_l}
\]

Difference can be regarded as contribution from 2 photon exchange
more experimental information are needed
Neutrino scattering data

Next Generation Neutrino beam: R. Gran, J. Monroe, S. Boyd … @ NuInt04

1 Track CC-QE
K2K Preliminary:
\[M_A = 1.06 \pm 0.03 \pm 0.14 \]

MiniBooNE CC-QE Preliminary

will be discussed in WG1 and WG2
Strange Form Factors
from parity violating electron scattering

Parity Violating Electron Scattering:
SAMPLE, HAPPEX, A4, G0, E91004

\[A_{PV} = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L} = \frac{-G_F Q^2 \varepsilon G_E G_E^Z + \tau G_M G_M^Z - (1 - 4 \sin^2 \theta_W) \varepsilon' G_M G_A^e}{4\sqrt{2} \pi \alpha} \]

\[\varepsilon (G_E^2 + \tau (G_M)^2) \]

\[\tau = \frac{Q^2}{4 M^2}, \quad \varepsilon = \left(1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right)^{-1} \]

\[\frac{dG_E^s (Q^2=0)}{dQ^2} = -\frac{1}{6} \rho_s^2, \quad G_M^s (Q^2=0) = \mu_s \]
Strange Axial Form Factor: W.M. Alberico, R. Tayloe@NuFact03, B. Fleming@NuInt04

\[G_A^s(Q^2=0) = \Delta s \]

NC over CC ratio:

\[R_{NC/CC}(Q^2) = \frac{(d\sigma/dQ^2)^{NC}_{\nu}}{(d\sigma/dQ^2)^{CC}_{\nu}} \]

Asymmetry:

\[A(Q^2) = \frac{(d\sigma/dQ^2)^{NC}_{\nu}}{(d\sigma/dQ^2)^{CC}_{\nu}} - \frac{(d\sigma/dQ^2)^{NC}_{\bar{\nu}}}{(d\sigma/dQ^2)^{CC}_{\bar{\nu}}} \]

\[A_{p(n)} = \frac{1}{4} \left(\frac{G_A^s}{G_A^s} \right) \times \left[\pm 1 - 2\sin^2 \theta_W \frac{G_M^{p(n)}}{G_M^3} - \frac{1}{2} \frac{G_M^3}{G_M^3} \right] \]

Ratio p/n

\[R_{p/n}^{NC}(Q^2) = \frac{(d\sigma/dQ^2)^{NC}_{(\nu,p)}}{(d\sigma/dQ^2)^{NC}_{(\nu,n)}} \]

\[-0.25 \leq G_A^s \leq 0 \]

Session 3. T.-A. Shibata

MIYACHI Yoshiyuki, Tokyo Institute of Technology
Strange Form Factor Extraction

Global analysis using HAPPEX and E734 results:

TABLE II. Two solutions for the strange form factors at $Q^2 = 0.5 \text{ GeV}^2$ produced from the E734 and HAPPEX data.

<table>
<thead>
<tr>
<th></th>
<th>Solution 1</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G^s_E</td>
<td>0.02 ± 0.09</td>
<td>0.37 ± 0.04</td>
</tr>
<tr>
<td>G^s_M</td>
<td>0.00 ± 0.21</td>
<td>-0.87 ± 0.11</td>
</tr>
<tr>
<td>G^s_A</td>
<td>-0.09 ± 0.05</td>
<td>0.28 ± 0.10</td>
</tr>
</tbody>
</table>
Generalized Parton Distribution

GPD
Generalized Parton Distribution Function

Hard Exclusive Production: \(Q^2 > 1 \text{GeV}^2 \)

\[
 l + N \rightarrow l + (\gamma, \pi, \rho, \ldots) + N'
\]

Form Factors:

- Dirac: \(\int_{-1}^{1} dx \, H^q(x, \xi, t) = F_1^q(t) \)
- Pauli: \(\int_{-1}^{1} dx \, E^q(x, \xi, t) = F_2^q(t) \)
- Axial vector: \(\int_{-1}^{1} dx \, \tilde{H}^q(x, \xi, t) = G_A^q(t) \)
- Pseudoscalar: \(\int_{-1}^{1} dx \, \tilde{E}^q(x, \xi, t) = h_A^q(t) \)

Parton Angular Momentum:

\[
 \int_{-1}^{1} dx \, x \left(H^q + E^q \right) = J^q
\]

\[
 G_M = F_1 + F_2
\]

\[
 H(x, \xi, t) \tilde{N}(P') n \gamma N(P) \quad E(x, \xi, t) \tilde{N}(P') \frac{i \sigma^{\alpha \beta} n_\alpha \Delta_\beta}{2M} N(P) \quad \text{(vector coupling)}
\]

\[
 \tilde{H}(x, \xi, t) \tilde{N}(P') n \gamma_5 N(P) \quad \tilde{E}(x, \xi, t) \tilde{N}(P') \frac{\Delta \cdot n}{2M} \tilde{N}(P') \gamma_5 N(P) \quad \text{(axial vector coupling)}
\]
Deeply Virtual Compton Scattering

\[e + N \rightarrow e' + \gamma + N' \]

\[\sigma_{BH} \gg \sigma_{DVCS} \]

DVCS amplitude can be measured through the interference term

\[A_{LU}(\phi) \propto F \cdot H \sin \phi \]

Beam Spin Azimuthal Asymmetry:

DVCS on Nuclear targets (Ne, N, Kr) have been also measured by HERMES and also studied by A. Kirchner and D. Muller, Eur. Phys. J. C 32 (2004) 347

MIYACHI Yoshiyuki, Tokyo Institute of Technology
Deeply Virtual Neutrino Scattering

\[\nu + N \rightarrow \nu' + \gamma + N' \]
\[\nu + A \rightarrow \nu' + \gamma + A' \]

P. Amore et. al, hep-ph/0404121

\[\alpha(x=0.3) \text{[nb/GeV}^4\text{]} \]

\[Q^2 \]

comparable to other reactions in QE
\[\sim 10^{-5} \text{ nb} \]

See also R. Ransome's talk at NuInt04

MIYACHI Yoshiyuki, Tokyo Institute of Technology
Summary (1)

- **Structure function:**
 - have been studied over 3 decades, using both charged lepton and neutrino scattering
 - Valence type structure can be precisely studied at Neutrino Factory together nuclear modification on PDF
 - From pol. semi-inclusive measurement $\Delta s = 0$ within error was obtained
 - Low and high x structure have to be studied experimentally
 - Light flavor quark structure is key

- **Form Factor:**
 - Q^2 dependence of Electromagnetic Form Factors
 - Next Generation of neutrino experiments will determine the axial form factor precisely
Summary (2)

• **Strange Form Factors:**
 – Parity violating electron scattering experiments: $G_{E,M}^s$
 – Neutrino scattering data is essential to determine strange axial form factor
 – Global analysis using both information

• **Generalized Parton Distribution Function:**
 – GPD connects structure function and form factor
 – Beam spin azimuthal asymmetry of DVCS has been measured at HERMES and CLAS
 – Deeply Virtual Neutrino Scattering
 • It can be one of applications to be attacked in the future neutrino factories.